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Abstract  

The theory described in the previous paper [Kato 
(1980). Acta Cryst. A36, 763-769] has been applied to 
calculating the intensity distribution in the topography 
of statistically homogeneous crystalline media. The 
integrated intensity for parallel-sided crystals is also 
presented. The formulae cover the whole range of 
crystal perfection. Primary and secondary extinctions 
can be treated on a unified theoretical base. A few 
numerical examples are given to demonstrate the 
variations of the integrated intensity as a function of 
the crystal thickness, the extinction distance and two 
parameters which characterize crystal perfection over 
short and long ranges compared with the extinction 
distance. 

1. Introduction 

Following the scheme described in the previous paper* 
(Kato, 1980b), we shall calculate the intensity distri- 
bution excited by the narrow incident wave A6(sg) in 
the Borrmann triangular fan. This is the first topic of 
this paper (§ 2). It turns out that the intensity field 
consists of four terms with weight factors depending on 
crystal perfection over a long range. One is the 
perfectly coherent component and another is the 
perfectly incoherent component. The two others are the 
mixed components and can be interpreted as due to a 
transformation of coherent waves to incoherent beams. 
The next topic is to calculate the integrated intensity for 
parallel-sided crystals (§§ 3 and 4) based on the results 
of§ 2. 

Only Laue cases are treated. The formulae obtained 
cover the whole range of crystal perfection by assigning 
a value between one and zero to a 'static' Debye-  
Waller factor E characterizing long-range perfection 
[equation (1.7)]. For a given E, the diffraction 
phenomena depend appreciably on the intrinsic cor- 
relation length r which characterizes short-range 

* This paper is referred to as paper 1. The previous series of 
papers having the title On Extinction (Kato, 1976a,b; 1979, 1980a) 
are referred to as I, II, III and IV. 
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perfection [equation (1.9)]. The details of the integrated 
intensities are discussed for the symmetrical Laue cases 
based on some numerical calculations (§ 4). 

The results can be used for understanding diffraction 
topography when statistical considerations are 
necessary, as mentioned in the Introduction of paper 1. 
The results of §§ 3 and 4 can be used for under- 
standing the nature of extinction when both primary 
and secondary extinctions are involved. 

2. The intensity distribution due to a narrow incident 
wave:  A6(sg) 

Equations (1.26) can be solved immediately under the 
boundary conditions (1.33a) and (1.34a) from the 
results of equations (1.9) and (1.22) i f / t  o and x+g are 
replaced by ~t e and EX+g, respectively. The coherent 
part of the intensity, therefore, is given by 

I~ =E~IKI2A2 s[~] ISI(2KEV/~oS~112 
x exp --Pc(So + sg), ( la)  

ICg= E21Xgl 2 A21Jo(2xEv/-~oSg)l 2 exp --fie(So "b Sg), (lb) 

where 3"o and Jx are the Bessel functions of zeroth and 
first order, respectively. 

Next, equations (1.28) without ~ ~ have to be solved 
under the boundary conditions (1.33b) and (1.34b). For 
this purpose, the method of two-dimensional Laplace 
transformation is useful. The Laplace transform of a 
function F(So,Sg ) is defined by 

oo 

F(p,q) = f f F(So,Ss) exp - (ps o + qss) (is o dsg. (2a) 
0 

Also, if F(p,q) is given, the original function is obtained 
by the inverse transform as 

f(So,Sg ) = - - ~  f (p ,q)  exp (ps o + qsg) dp dq 
y-ioo 

(2b) 

for So,Sg > e. 

© 1980 International Union of Crystallography 
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Here, we shall assume that F(p,q) is regular in the 
domain of Re(p)  and Re(q) >_ y, ), being called the 
radius of convergence. 

The Laplace transform of equations (1.28) can be 
written as follows. 

~ t (p +/te)Io(p,q) = ?r_gI~(p,q) + e_g(1 -- E2)Fg(p,q) 
(3a) 

(q + ~e)Ilg(p,q)= ?rgIio(p,q) + eg(1 --E2)ICo(p,q) 
+ Ix l (1 -Ee) IAle (p  + (3b) 

The last term of (3b) is due to the boundary condition 
(1.33b), and it is the explicit form of 

oo 

I~(p,e) = f I~(So,e) exp -- ps o ds o. (4) 

It is straightforward to solve I(0(p,q) and Itg(p,q) 
from (3). The results are 

Iio (p,q)= [ag 77_,ICo + a_g(q + ~te)ICg 

+ ?r_glKglZ(p + ~e)-~IA I 2] (1 - E2)G(p,q), 
(5a) 

lJ(p,q) [trg(p +/te)I o + _ 
+ IKgl2IAI2](1 -- E2)G(p,q), (5b) 

where the arguments (p,q) are omitted in {I} on the 
right side. The function G is defined by 

G(p,q) = [(p + ~ ) ( q  + ~e) - ~2]-1, (6) 

where 

~r2= frg~r_g. (7) 

If the Laplace transforms of ICo(So,Sg) and I~(So,Sg ) are 
given we shall have the Laplace transform I(0(p,q) and 
Ig(p,q). Using the relation (2b), in principle, we obtain 
the intensities I (0 ( S o,S g ) and Fg ( S o,S g ). 

Here, however, we shall write them down by the use 
of the convolution theorem of the Laplace transform, 
remembering that each term of the expressions for 
Ito(p,q) and Ilg(p,q) of (5) is the product of {I} and G 
multiplied by a function of (p + ~e) or (q + ~e)" The 
final results are 

Iio(So,Sg) = [tTg~7_g K 2 E 21(01) + tT_g~lKgl 2 E 2 I(0 2) 

+ IKg12(~7_g/~7)I(o3)] IAI2(1 -- E2), (8a) 

I (So.S,) = [op,¢2 E 2 + o _ p ,  Jx, jeE2I ') 

+ IXgl 2 I~ 3)] IAI2(1 - E2), (8b) 

where IotO and I~ 0 are the functions defined by 

Io (1) = [I0(2~ Sk~o sg) exp --~e(So + sg)] 

I(o 2)= S[fss ~ I,(2~ sk/ sg)exp-~Ue(So+ sg)] 

* [IJo(2KEV/~oSg)[2 exp-l~e(So + sg)], 

1(o 3) = s ~ s  ~ I,(2~V/~o sg) exp --~e(So + Sg), 

1(1)= [ S~o ll(2~V/~oSg) exp_~e(So + Sg)] g 

* [ S° lJl(2KE sv/~° s~)12 exp -lUe(S° + Sg)] sg 

(9b) 

(9c) 

(10a) 

I~ 2)= [/0(26 ~ o S g )  exp --~e(So + sg)] 

* [IJ0(2xE s~/~o sg)[ 2 exp --fie(So + Sg)], (10b) 

1(3)  = Io(2~7~oSg ) exp --~Ue(S o + Sg). (10C) 

Here, * implies the convolution of the functions on both 
sides. A few integrals of type (2b), which are required 
for deriving (8) from (5), are explained in Appendix A. 
It is worthwhile noting that 1 or(1), i(o2), i(gl) and 1 (2) are 
defined by the convolution of the intensity distributions 
of perfectly coherent and incoherent cases. The position 
specified by the convolution variables, therefore, can be 
interpreted as a point where the coherent wave is 
converted to the incoherent beam. The physical 
meanings of each term of (8b) and (lb) are illustrated in 
Fig. 1. An analogous interpretation can also be given to 
(8a) and (la). 

3. The  integrated intensities for parallel-sided crystals  

(a) The perfectly coherent components, R~o and R e 
The intensity distributions are given by (la) and 

(lb). The integrated intensities, therefore, are given by 

Incident wave 

Coherent Icompound lncoherentleomponent 

, 1 , ¢ 

/ .  
Coherent component 

t~ t I 

Incoherent component/~ 

Fig. 1. Interpretation of the diffracted intensities 13 (equation lb) 
and I~ (equation 8b). The last three drawings correspond to the 
three terms of Itg °, respectively. E Entrance point. P Observation 
point. C The point where the coherent waves (white) are 
transformed to the incoherent beam (hatched). The arrows 
indicate the reflection processes of this transformation. 
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integrating the distributions over the exit surface.t  As 
discussed in a previous paper (IV), it is convenient to 
multiply the results by the factor [2(sin 20n) -2] in order 
to represent them on the scale of unit angular and 
spatial distribution of the incident energy. Thus, one 
obtains the integrated intensities 

R~o = E 2 Qo( t /yo)exp(-Mt)Wo( t ) ,  ( l l a )  

R~ = E z Q(t /y  o) exp ( -Mt)we( t ) ,  (1 lb) 

where t is the thickness of the crystal and Q and Qo are 
defined by 

O = 2(sin 20n)-llxel z, (12a) 

Qo = 2(sin 20n)-ll xe x_el. (12b) 

The functions Wo(t) and we(t) are defined and cal- 
culated in Appendix B. Their expressions are given by 

1 
Wo(t) = exp ( -N t )  - -  {Io(Nt) ,Jot(4Z 2 - -  N2) 1/2 t]} 

t 

2N 
+ - -  { (exp - -Nt ) , lo (Nt )  

t 

*J0 [( 4 z z -  NZ) 1/z tl}, (13a) 

1 
W e ( t  ) = - -  {Io(Nt) ,Jo[(4Z z - NZ) 1/2 t]}, (13b) 

t 

where * implies the convolutional operation and the 
parameters M, N and Z are given as follows. 

M = ½ge + N : ½/'/e (14a,b) 
Yo 

Z = xE/  ~c/~o y e, (14c) 

where ?o and Ye are the direction cosines between the 
normal of the crystal and the directions of s o and s e, 
respectively. 

(b) The perfectly incoherent components, Rio and  Rig 

The incoherent components of the wave fields are 
composed of three terms, as discussed in the previous 
section [see (8a) and (8b)]; each third is a perfectly 
incoherent component. One can calculate the compo- 
nents immediately, as discussed in IV [equations (16) 
and (20)1, by replacing ge and a by ~ and ~. The results 
are given in the form 

R/o = (1 -- EZ)Oo(t/V/Yo Ye)exp(-hTlt)uo(t); (15a) 

R/g= (1 -- E2)Q(t/yo)exp(-hTlt)Ue(t) ,  (15b) 

where Uo(t) and Ug(t) are defined in Appendix B. The 

t The procedures are similar to those used in deriving equations 
(IV. 16) and (IV.20). 

explicit forms are given by 

Uo( t )=(1 /Et ) {cosh[ ( l~  z + Ez) '/2 t] 

_ / ~ ( ~ z  + Ez)-i/2 sinh [(/~2 + E2)l/z t] 

-- exp (--~Tt) }, (16a) 

ue(t) = sinh[(57 z + E2) l/z t]/[(.N z + E2) 1/z tl. (16b) 

The parameters involved are defined by 

 1(1 1( o - - - - q -  ~e, ] ~ :  -- ~e, (17a,b)  
2 Yo 2 ?e] 

L =  b/V/-Yoo Y e. (17c) 

(e) The mixed  components,  M~o 1), ~v~ " i~2).o , M~ 1), M~ 2) 

The next problems are to calculate the integrated 
intensities due to the first and second terms of (8a) and 
(8b). They already involve the convolutional inte- 
gration [Jc]. The integral variables (S'o,S'g) can be 
transformed to (x ' , t ' ) ,  being parallel and perpen- 
dicular coordinates to the crystal surface, by the 
transformations (IV.12). Also, it is worth noting the 
relation of the volume elements; 

d x '  dt' = sin 20 s ds' o ds'~. (18) 

When the incident beam is sufficiently narrow, the 
required integrations are [Jc] mentioned above and the 
integration over the exit surface [J~]. If the incident 
beam is a homogeneous distribution of such a narrow 
beam, logically speaking, one needs additionally the 
integration [Je] over the entrance surface. Since, 
however, the result after taking the integration [J~] 
must be independent of the entrance position of the 
narrow beam, [Je] is redundant. In fact, this is the case 
for R c and R i where only the integration [Ja] is needed. 

In the cases of M~o 1), ~i~z). m o , etc., however, it is more 
convenient to exchange the order of [J~], [J,,] and [Je]. 
Fixing the integral variables (x ' , t ' ) ,  we perform the 
integration [Jel. Then, the integrand must be a function 
of t', t -- t' and x - x ' .  Next, we perform the 
integration [Ja ]. The integrand then becomes a function 
of t' and t - t'. Thus, the integral can be given by a 
convolutional integration with respect to a single 
variable t', and the integration of x '  can be regarded as 
redundant. From these considerations, one can write 
down the integrated intensities corresponding to the 
first and second terms of (8) as follows: 

M~ol)=E2(1-EZ)Qo~c4rre(1/yo)2[ke*lo]t ,  (19a) 

M(o 2) = E2(1 -- E2)Qo K 4 r r e (1 / ) , o~o  y,) [ko*le] t, 

(19b) 

M~'~ = E2(1 -- E2)QK 4 rre(1/~o V~o ~e) [ko*lo]~ g 

(19e) 

M~g2) = E2(1 -- E2)QK 4 rre(1/yo) 2 [kg*lelt, (19d) 
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where the convolutional operation is defined by 

t 

[k . l ] t =  f k(t ' ) l ( t  - t ') dt' (20) 
0 

and the functions k o, kg, l o, etc. are defined and 
calculated in Appendix B. They involve M, N, Z 
defined by (14) as well as 3~r, ~ and/S defined by (17). 

and 

A =  I xl-1, T = t / c o s 0  B. 

Similarly, (15) and (22) give the results 

R/o = (1 -- E2)no  exp (--po T)(re/A)  -1 

x {cosh [2(rJA)(T/A)]  -- 1} 

x exp[--2(re/A)(T/A)]  , 

(28a,b) 

(29a) 

4. S y m m e t r i c a l  L a u e  c a s e s  

Although the integral intensities are given in analytical 
forms [(11), (15) and (19)], the expressions are rather 
complicated in general cases. To give physical mean- 
ings to these expressions, in this section we shall 
consider the simplest case: N = 0 and )V = 0. Then, the 
functions Wo, wg, etc. in (13), (16) and Appendix B are 
simplified as follows: 

w0 = (2Zt)  -~ [ ( 2 Z t ) -  W(2Zt)l, 

W g  

U o : 

Ug : 

to= 
l ,:  

k o = 

kg = 

(21a) 

(2Zt) -1 W(2Zt ) ,  (21b) 

(/St)-' [cosh (/St) - 1], (22a) 

(L,t) -a sinh (Lt), (22b) 

(2Z) - I [ (2Z t )  - W(2Zt)] exp (--Mt), (23a) 

(2Z) -1 W ( 2 Z t )  exp (--Mt), (23b) 

/~o= (/S)-1 [ cosh ( /S t ) -  1] exp (-]Qt) (24a) 

(L') -~ sinh (/St) exp (-]Qt), (24b) 

where 

2Zt  

W(2Zt )  = f Jo(P) dp (25a) 
o 

= 2 Z J2 ,+l(2Zt)  (25b) 
n = 0  

is Waller's integral. In the following arguments, 
equation (1.37) is used for the expression of F, which is 
included in/S and/ft .  

Substituting from (21) into (11), we have 

Rg = E H  o exp (--/t o T ) { Z E ( T / A )  -- W[ZE(T /A)]}  

x exp {- -2(1--E2)( r /A)(T/A)} ,  (26a) 

Rg = EHg exp (--/~ o T ) W [ 2 E ( T / A ) ]  

x exp {--2(1--E2)( r /A)(T/A)},  (26b) 

where 

H o = Hg = ½(sin 28n) -~ (2/A) (27)t  

t For avoiding complexity, IKgl : Ix gl is assumed. In absorbing 
crystals H o and Hg are slightly different. 

where 

R~ = (1 - -  E2)Hg exp  (-- /t  o T)(re /A)  -1 

x s inh[2(re /A)(T/A )] 

x exp[--Z(re/A)(T/A)]  , (29b) 

z e = E A  + (1- -E2)z .  (30) 

The calculations of--oM"~ and Mtg 0 (i = 1 and 2) are 
more complicated. Here, the outline is described. The 
convolutional integrals appearing in (19) can be written 
as follows with the use of (23) and (24): 

L[kg*lo]t= (2ZL-')-I{½(ma- m2)--½(n I - n2)}, (31a) 

Ltko*lglt= (2ZL")-' {½(n 1 + n2)--  n3} , (31b) 

L[ko*lo]t= (2ZL") -1 {½(ml + m2)--m3--½(nl  + n2) 

+ n3 }, (3 lc) 

L[kg*lg]t = (2zL') -1 {½(na - n2)}, (3 ld) 

where {mj} and {nj} are the integrals defined by 

{mj} = L { e x p - - X j t } * { ( 2 Z t ) e x p - - M t }  (32a) 

= (Z/Yj)[(2Zt)-  (2Z/Yj) 

x (1 -- exp --Yj  t)] exp --Mt,  (32b) 

{nj} = L { e x p - - X j t } * { W ( 2 Z t ) e x p - M t }  (33a) 

= ( L / Y j ) [ W ( 2 Z t ) - -  2Z  e x p ( - Y j t )  

Here, 

and 

t 

x f J o ( 2 Z t ' ) e x p ( Y f l ' )  dt'] e x p -  Mt. 
0 

(33b) 

Xj  = 371- L,  M +/S  and ]Q, (34a,b,c) 

f o r j  = 1, 2 and 3, respectively. The integral involved in 
(33b) can be represented by a series of Bessel functions 
as in the case of the Waller integral (25b). The details 
are explained in Appendix C. 

Yj = X j  -- M = --(1 -- E2)L, (1 -- EE)L + 4Z and 2Z 
(35a,b,c) 
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From (19) and (31), finally, the mixed components 
of the integrated intensity can be written as 

Mo = M(o 1) + -'- oM(2) 

= ¼E(1 - E2)Ho {½(m, -- m 2) 

+ n 2 -- n 3 }, (36a) 

M e =  M°)  + ---eM(2) 

= ¼ E ( I  - -  E2)He{½(m, + m2) 

- m 3 - n 2 + n 3 }. (36b) 

Fig. 2 shows the integrated intensity for E = 0.1 and 
r/A = 0.1 as an example of the case in which 
secondary extinction is predominant. When E < 0.1, 
the coherent component R~ and the mixed component 
M e are negligible. It is worth mentioning, however, that 
the asymptotic value of R~ is appreciably smaller than 
that in the conventional secondary-extinction theory 
[E = 0], because the effective coherent length r e is 
larger than r. 

Fig. 3 shows the case of E = 0.9 and r/A = 0.1, 
which is an example of the case in which primary 

extinction is predominant. Firstly, the spacing of the 
Pendell6sung fringes is elongated by the factor (I /E) .  
Next, the intensity R~ attenuates due to the transfor- 
mation to the mixed component M o. 

A more significant point is that the mixed component 
M e is appreciably large for a crystal thicker than a few 
Pendell6sung fringes. This is because the coherent 
component R~ is very large for thick crystals and 
transformed to M e unless E is very close to unity or 
r/A is very small. Although the detailed analysis is re- 
quired, the observation of Wada & Kato (1976) that 
the background of the traverse topograph of the nearly 
perfect crystal is unexpectedly large can be partly 
explained from this consideration. In fact, M o and Mg 
are gradually increasing even for E = 0.1, as shown in 
Fig. 2(a) and (b). In this particular case, however, the 
amounts are practically negligible, because the coherent 
source R c is small for a finite crystal thickness. 

5. Discussion and summary 

In this series of papers, it is intended to study 
systematically diffraction phenomena in crystals having 
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1 I0 115 2'0 215 

- - -  2 (TI~) 
(a) 

R.' 
/ 

/ / 
/ "  

/ / /  

/ / /  R~,Mo 

/ ' "  1.0 

5 I 0  15 20 25 30 

2 (T//I) 
(a) 

R~ 

5.( ~.~ / / / / /  R~(E = O) . . . . . . . . . . . . .  
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Fig. 2. The integrated intensities [cf. equations (26), (29) and 
(36)] in the case of E = 0.1 and r/A = 0.1 on the scale of 
Ho exp (--/a o T) and H~ exp (-#o 7") for the transmission (a) 
and the Bragg-reflection cases (b). 

R~ 

1.5 
I 

:.-11, ~1"-'~. ~. ,," ",, ,, '- ' . , . - - - .  . .--. .  
LII '~, ,; ,, R-. ,' ",. .,' '.. .." ",. 
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Fig. 3. The integrated intensities in the case of E = 0.9 and r/A = 
0.1 on the same scale as in Fig. 2. (a) Transmission. (b) Bragg 
reflection. 
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a wide range of crystal perfection. The experimental 
objects are the topographic observations on the one 
hand and the extinction phenomena of the integrated 
intensity on the other. 

(a) Section topographs 

The nearly perfect crystals including invisible defects 
and the imperfect crystals in which the defects are not 
individually distinguishable can be dealt with by the 
present theory (§ 3). We shall, however, leave the 
detailed discussion for a future paper because one 
needs the numerical analysis of the mixed components 
I~o i) and l ~i) (i = 1 and 2) based on (9) and (10). --g 

Nevertheless, the physics underlying these analytical 
expressions is clear, as stated at the end of § 3. Also, 
when the mixed components are negligibly small (E < 
0.1), I(o 3) and Itg 3) are sufficient to describe the section 
topographs. 

(b) Traverse topographs and extinction phenomena 

In this paper, to avoid mathematical complexity, only 
the symmetrical Laue case for parallel-sided crystals 
was treated. Some numerical results which were 
obtainable by a hand calculator and a table of Bessel 
functions were given in § 4. Again, we shall leave the 
other cases to the future studies. Here, two extreme 
cases are discussed in connection with the conventional 
extinction theories. 

(i) Nearly perfect crystals (E > 0.9). Pendell~sung 
fringes are visible in Rg. The contrast, however, will be 
disturbed by the presence of the mixed component Mg. 
Only when A >> r does the conventional dynamical 
theory (primary-extinction theory) hold provided that 
the structure factor is corrected by the 'static' Debye- 
Waller factor E. Incidentally, in the case of E >> r/A, 
the physical meaning of r is the size of modulation from 
the averaged perfect lattice. The crystal looks more 
perfect as r decreases. 

(ii) Reasonably imperfect crystals (E < O. 1). The 
general trend of the integrated intensity is predictable 
by the scheme of secondary extinction, provided r e is 
used instead of r [equations (29)]. The intensity value, 
however, depends upon the size of r/A for a fixed E. 
Only when vIA >> E is the conventional secondary 
extinction theory applicable. In this case, the physical 
meaning of r is the size of the crystallites. In contrast to 
the previous case (E >> r/A), as r increases, the crystal 
becomes more perfect. 

Next, we shall discuss a few feasible improvements 
of the present theory. 

(a) Borrmann absorption. As mentioned in the 
footnote of Appendix B, Borrmann absorption has 
been neglected in the calculations of the integrated 
intensity. In nearly perfect crystals, however, the exact 
expression (Kato, 1968) for R e or a practically useful 

one (Kato, 1954) is available for a crystal having 
Borrmann absorption. 

(b) The use of  the correlation length r 2. This 
problem has been raised already in § 5(b) of Kato 
(1980b). The definition of r 2 was given by equation 
(II.2).* It has to be used in the calculation of the beam 
intensity, which is associated with a set of optical 
routes R and R' including no isolated kink point such 
as a, b, a' and b' in Fig. 3 of paper 1. The expression 
for the intensity can be written as Ito 3) (r~) and Itg 3) (r~), 
where r~ = (1 - E2)r2 and r in (9c) and (10c) is 
replaced by r 2. Since, however, the intensity for such a 
set of routes is already included in (9c) and (10c) as the 
forms of/0(3) (r ')  and Ig (3) (r'), r '  being (1 - E2)r, one 
needs to subtract them from the respective expressions. 
Thus, the correct intensities must be 

I(o 3) = Ito 3~ (r e) + I(o a) (r~) - I(o 3) (r'), (37a) 

It 2) = I(2) (r e) + I(g 3) (r 9 -- I(2 ) (r'). (37b) 

When E tends to zero, the first and third terms on the 
right sides cancel out in each equation so that the 
results are identical to those obtained in II. Also, when 
E tends to one, the contribution of I~o 3) to the total 
intensity is negligible. 

Further, one can improve the mixed components Ito 0 
and Itg ° (i = 1 and 2) by taking similar expressions to 
(37) for the first functions of the convolutional forms of 
(9a) and (9b) and (10a) and (10b). The expressions, 
however, are too complex in practice. 

For the expressions of the integrated intensities also, 
similar arguments can be applied. The simplest 
improvement is expected by taking 

R/o = Rio(re) + Rio(r'z)- R~o(r'), (38a) 

t t Rig = Rig(re) + R g ( r ~ ) -  Rig(e), ( 3 8 b )  

instead of expressions (15a) and (15b), respectively. 
It is desirable to compare the present results with 

experiment. The most feasible experiment is the study 
of the wavelength dependence of the integrated inten- 
sities under the same diffraction conditions. 

APPENDIX A 

The Laplace inverse transform of G(p,q) and the 
related functions 

(1) G(p,q) [definition: equation (6)] 

We shall calculate the function 
1 )2 7+i°° 

y--leo 
exp [ps o + qsg] 

x (P + ~e)(q + ; e ) -  ~2 dp dq. (A.I) 

* The functionf(z),  however, should be replaced by g(z). 
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The first-order pole in the p complex plane is located at 

p = - - ~ l  e + ?rZ/(q + ~-le). 

Taking the integral contour surrounding this pole, we 
have 

?+i~r_ exp [ g] 1 b z s o 
G(So,Sg) = J (q + ~te) -1 . - -  + 27d [q +-~  qs dq 

y -  ioo 

x e x p - - ~ s  o (s  o > O) 

-- 2Zr/1 r+~+/~r~ q'l t[?r2S°q--S-- q ' ]  - -  J expj + Sg dq' 
y + ~e-ioo 

x exp--fie(So + Sg) 

= I o ( 2 ? T V ~ o s g ) e x p - ~ ( s  o + sg) (so,sg> 0). 
(A.2) 

(2) G,(p,q)  = (q -- ~te)G(p,q) 

G,(so,S,) = ~ (q "+ ~e) 
y-- i oo 

exp [ps o + qs,] 
x (P + IZe)(q + ~ l e ) _  ~7 2 dp dq 

1 Y+u"+e~ [~ 2 ] f s o 
- -  exp . - -  + q'sg dq' 

2rd q' 
? + lt e--ioo 

x exp-~t,(s o + sg) (s o > 0) 

S o 
: ~ /~-~° Ii(2bV/~o s,) 

N Sg 

(A.3) 

x exp--~te(S o + sg) (So,Sg > 0). (A.4) 

In this case, the integral includes 6(s~), but it can be 
omitted for Sg > 0. 

(3) Gz(p,q) = (P + ~ae)G(p,q) 

az(So,S,) = (P + ~e) 
y--ioo 

exp [ps o + qs~] 
x (P + ~le)(q + f ie)  - -  62  dp dq. (A.5) 

Ifp and q and s o and sg are interchanged, the function is 
identical to case (2). Therefore, 

G 2 ( S o ' S g )  = ~ / S g  / l ( 2 ~ V ~ o  Sg) exp - -~le(S  o + Sg). 
N S O 

(A.6) 
(4) G3(p,q)= (p + ~e) -1 G(p,q) 

G3(So,Sg ) = (p  + ~e) -1 
?-  i¢o 

exp [ps o + qsg] 

(p  + 1-le)(q + ~l e) --~7 2 
dp dq. 

(A.7) 

Firstly, we calculate the contour integral in q space. 
Then, we have 

G a ( S o , S g )  = ( p  + f ie)  - 1  

7-  ioo 
?r 2 sg ] 

x exp ps o + dp 
P+~e 

X exp --Pc sg 

=~-1 S~/l(2~v~os ~) 

x exp--~te(S o + sg) 

(sg > 0) 

(So,S~ > 0). (A.8) 

A P P E N D I X  B 

Integra l s  required for  the  in tegrated  in tens i ty  

(a) The definitions 

In terms of the normalized variable ~ defined by 
equation (IV. 14), we shall define the following integrals. 

u° = 2-1 [-1++~] II(ff'tv/1 -- ~2)exp (ATt~) d~ 

[cf. (15a)], (B.la) if [l + ~]l/2i~(ff, tv/1 _ ~2) exp(_~tg..) d~, (B.lb) 
f i°=2 [ l - ~ J  

-1 

1 

ug=½ f Io (L tv  / 1 -- ~2) exp(iqt0 d~ [ef (15b)], (B.lc) 
--1 

1 1 
j IJ , (Ztv/1 - ¢2)12 exp (Nt0 d~ 

I 

w ° = 2  -- 1 + ~  
--1 

[ef. (1 la)], (B.ld) 
1 

wg= ½ f IJo(Ztv /1- -  ~2)12 exp (NtO d~ 
--1 

[cf. (1 lb)]. (B.le) 

For representing the mixed components of the in- 
tegrated intensity (19), we shall also define the 
following functions. 

(ko,ko,kg) = (Uo,fio,Ug)t exp --Mt, (B.2a) 

(lo,l~) = (Wo,Wg)t exp--Mt. (B.2b) 

Most of these have been obtained in the previous 
papers [u o and ug: Kato (1980a); wg: Kato (1968)]. 
rio is derived from u o simply by changing the sign of 2q. 
For this reason, only w o is discussed in detail, but wg is 
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also treated for showing the relations between w o and 
wg. Here, however, only the case of real Z is explained, 
because the case of complex Z is very complicated/f 

given immediately as 

1 
wg(t) = -  {Io(Nt)*JoI(4Z 2 - N2) 1/2 t]}. (B.12) 

t 

(b) The calculation o f  wg and Ig 

Using the Neumann's integral representation 
[equation (11.4.7) in Abramowitz & Stegun, 1964], 

{jm(p)}2 = _1 ;J m(2psm e)de ,  (B.3) 
7Z 

0 

one can write 

wg(t) = - wg(e) de, (B.4) 
7~ 

0 

where 

and 

1 

wg(e) = ½ f Jo(x V / 1 -- ~2) exp 0 ' 0  de (B.5) 
--1 

x = 2Zt  sin e, Y = Nt. (B.6a,b) 

The function wg(e) is well known and given by 

wg(e) = sinh X / X ,  (B.7) 

where 

x =  (y2_ x2)1/2. (W.8) 
By inserting (B.7) into (B.4), wg(t) can be obtained. 

Here, for convenience, we shall calculate first lg(t) 
defined by (B.2b); namely 

1 ,-" 
lg(t) = - [ sinh [N 2 -- 4Z 2 sin 2 e] u2 t 

7[ d 
0 
x [N 2 -- 4Z 2 sin 2 e] -v2 de  exp (--Mt). (B.9) 

Taking the Laplace transform of this expression, we 
have 

1 r'~ 
lg(p) = ~ J [(p + M) 2 -  (N 2 -  4Z 2 sin 2 e) ] - '  de 

o 

= {(p + M) 2 -  N2} -u2 {(p + M) 2 

+ (4Z z -  Nz)} -uz. (B.10) 

Thus, using the Laplace inverse transform and the 
convolutional theorem, we have 

lg(t)= {lo(Nt)*Jo[(4Z 2 -  N2) l/z t]} exp(--Mt), (B.11) 

where * implies the convolutional integration, and 10 
and J0 are the modified and ordinary Bessel functions 
of the zeroth order, respectively. The function Wg(t) is 

t This implies neglecting Borrmann anomalous transmission. 
Kato (1968) treated the integral wg for complex Z. 

(c) w o and l o 

Similarly to (B.4) and (B.5), we have 1; 
wo(t)=- wo(e) de, (B.13) 

;g 
0 

where 

l f [l -  sOd . Wo(e) 
2-1 L1 + ~J 

(B.14) 
If one defines the function 

2 1 f  °°- (--1)n(1--~2)n(2)2n+2n!(n + 2)! Vo(e) = E - exp (Y0 d~ 
--1 n = O  

(B.15) 
it is ~ shown from the series expansion of 
J2 (xv/1 -- ~z) that 

OV o c9 2 V o 
Wo(e) = 1 - 2 ~ + ~ (B.16) ay ay 2 

Also, comparing (B. 15) with (B.5) [cf the power series 
of Jo(x ~ - ~2)], we have 

4 c°(x 2) 8(x2) [x 2 v o] -- wg(e) = sinh X/X .  

(B.17) 

Integrating this with the conditions 

x 2v o = 0 ,  ~ [ x  2v o ] = 0  
~(x 2) 

at x 2 = 0, we obtain 

Vo(e) = ( 1 / x 2 ) [ x  sinh X -  cosh X -  y sinh y 

+ cosh y] + ½ cosh y. (B. 18) 
Then, by the use of (B. 16), we have 

Wo(e) = [e -y - sinh X / X ]  + (2/x 2) [y2 sinh X / X  

- y cosh X + ye -y ]. (B. 19) 

As in the case of Wg(t), we shall first calculate lo(t ) 
defined by (B.2b). The Laplace transform of lo(t) is 
given by 

lo(P) = (p + M + N) - 2 -  [(p + M) 2 -  NZ] -1/2 

x [(p + M) 2 + 4Z  2 - N 2 ]  -u2 

+ 2 N ( p  + M + N) -1 [(p + M) 2 -- N2] -1/2 

x [(p + M) 2 + 4Z  2 - N2] -'/2. (B.20) 
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Therefore,  we have 

to(t) = {t exp ( - N t ) -  Io(Nt)*Jo[(4Z 2 - N2)1/2t] 

+ 2N[exp (--Nt)],Io(Nt) 

*Jo[( 4 z 2  -- N2) 1/2t] } exp (--Mt). (B.21) 

Finally, we obtain 

1 
w o (t) = exp (--Nt) - - {Io(Nt)*Jo[ (4Z = -- N2) 1/=tl} 

t 

2 N  
+ -  {[exp(-Nt)] , Io(Nt  ) 

t 
*Jo [( 4 Z z -  NZ)VZt]} • (B.22) 

A P P E N D I X  C 

Q 

J(p;r/)  = exp --rip f Jo(P) exp r/p dp. 
0 

Here, the parameter  r / is  assumed to be real. Using 
the integral representation 

1 ~ 
J o ( p ) = -  f expi (pcosO)dO,  (C.1) 

7r 
0 

we have 

where 

J(p;r/)  = K(p;r/) -- K(0;r/) exp --r/p, (C.2) 

1 / exp i(p cos 0) d& 
K(p;r/) = -  (C.3) 

zc r /+  i cos 0 
0 

If we use the relationship 

oo 

exp[ i (pcos  0)] = Jo(P) + 2 ~. (i)k Jk(P) Cos(kO), 
k=l (C.4) 

it follows that  

oo 

K(p;r/) =Jo(P)Lo(r/) + 2 ~. (i) k Jk(p)Lk(r/), (C.5) 
k = l  

where 

if cos (k0) 
Lk(r/) = - dO. (C.6) 

re r /+  i cos 0 
0 

Thus,  the problem is reduced to the integration of 
Lk(r/). The two cases have to be treated separately. 

(i) r />  0. 

Lk(r/) = (_i)k (/12 --t- 1) -1/2 [(r/2 + 1) 1 /2-  r/} k. (C.7a) 

(ii) r/ < 0. Using the relationship Lk(--r/) = 
--{Lk(I r/I)}*, we obtain 

Lk(r/) = _ (i)k (/12 -t- 1)  -1 /2  [ ( /12 "4- 1)  1/2 - -  I r / I ]  k. 

(C.7b) 
Inserting these into (5) and (2), we have 

(i) r/> o. 
I ~111 k. 

J(p;r/) = [r/2 + 11 - ' /2 {Jo(P) 

1X3 

+ 2 ~ [(r/2 + 1) 1 /2-  r/]kJk(p)} 
k = l  

- -  [r/2 + 1] -1/2 exp (--r/p). (C.8a) 
(ii) r / <  0.  

J(p;r/) = -  [r/2 + 11-1/2 {Jo(P) 

oo 

+ 2 y (--1) k [(r/2 + 1) 1 /2-  Ir/ll* Jk(P)} 
k = l  

+ [r/2 + 1] -1/2 exp(Ir/Ip). (C.8b) 

Incidentally, the case of  r / =  0 is immediately obtained 
from the definition of J(p;r/)  as follows 

Q 

J(p ;0)  = f Jo(P) dp 
0 

oo 

= 2 ~ J2k+l (p) dR. (C.9) 
k = 0  

This result is also derived from (C.8) from the 
relationship 

oo 

Jo(P) + 2 Z J2k(P)= 1 
k = l  

[Abramowitz  & Stegun (1964); equation (9.1.46)]. 
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